El cúmulo de galaxias SDSS J1038+4849 sonríe.

El cúmulo de galaxias SDSS J1038+4849 sonríe porque sabe que los telescopios no pueden ver directamente la materia oscura, pero nos ayudan a averiguar más sobre ella gracias a las lentes gravitacionales.

Cómo la gravedad deforma la luz: Obviamente, la gravedad es muy importante. Te mantiene pegado a la Tierra para que no salgas volando al espacio y, lo que es igual de importante, evita que el helado salga flotando del cucurucho. Hemos aprendido mucho sobre la gravedad en los últimos cientos de años, pero una de las cosas más extrañas que hemos descubierto es que la mayor parte de la gravedad en el universo proviene de una fuente invisible llamada “materia oscura”. Aunque nuestros telescopios no pueden ver directamente la materia oscura, pueden ayudarnos a averiguar más cosas sobre ella gracias a un fenómeno llamado lente gravitatoria.

La gravedad de la situación: Todo lo que tiene masa ejerce una atracción gravitatoria sobre el resto de las cosas que tienen masa. Esto se debe a que la masa deforma el espacio-tiempo, el tejido subyacente del universo. Cosas como las llamas, los donuts e incluso los clips deforman el espacio-tiempo, pero sólo un poco, ya que no son muy masivas. Los objetos más voluminosos, como los planetas, las estrellas y los agujeros negros, lo deforman mucho porque son mucho más masivos, pero sólo en su entorno local, ya que son compactos. Las distorsiones espacio-temporales que crean influyen en el movimiento de los objetos que pasan cerca de ellos.

Los grandes cúmulos de galaxias son tan masivos que su gravedad produce efectos bastante extraños. Cuando la luz pasa cerca de un objeto masivo, el espacio-tiempo se deforma tanto que curva la trayectoria que debe seguir la luz. La luz que normalmente atravesaría el cúmulo de galaxias se curva a su alrededor, produciendo imágenes intensificadas -y a veces múltiples- de la fuente. Este proceso, denominado lente gravitacional, convierte a los cúmulos de galaxias en gigantescas lupas intergalácticas que nos permiten vislumbrar objetos cósmicos que normalmente estarían demasiado lejos y serían demasiado débiles incluso para nuestros mayores telescopios.

El Hubble “ve” materia oscura:

Recapitulemos: la masa deforma el espacio-tiempo. A mayor masa, mayor deformación y mayores efectos de lente gravitatoria. De hecho, estudiando los objetos “lente”, podemos determinar la cantidad y la ubicación de la materia invisible que causa la distorsión.

Gracias a las lentes gravitacionales, los científicos han medido la masa total de muchos cúmulos de galaxias, lo que ha revelado que toda la materia que pueden ver no es suficiente para crear los efectos de deformación que observan. Hay más atracción gravitatoria que materia visible que la ejerza, ¡mucha más! Los científicos han dado el nombre de “materia oscura” a la materia invisible que explica esta diferencia. Es invisible a nuestros ojos y telescopios, ¡pero no puede ocultar su gravedad!

El desajuste entre lo que vemos y lo que sabemos que debe haber puede parecer extraño, pero no es difícil de imaginar. Usted sabe que la gente no puede flotar en el aire, así que ¿qué pasaría si viera a una persona que parece hacer precisamente eso? Sabrías de inmediato que debe haber cables que lo sostienen, aunque no pudieras verlos.

Este pase de diapositivas destaca cinco imágenes del telescopio espacial Hubble con galaxias fuertemente polarizadas. La trayectoria de la luz de estas galaxias se curva alrededor de los objetos masivos debido a su fuerte gravedad, creando estas imágenes distorsionadas.
NASA, ESA, Hubble, J. Lotz, Equipo HFF, Andrew Fruchter, Equipo ERO, K. Sharon y E. Ofe
k

Roman intensificará la búsqueda: Bautizado con el nombre de la primera astrónoma jefe de la NASA, la “madre del telescopio espacial Hubble”, el Nancy Grace Roman Space Telescope tendrá un campo de visión al menos 100 veces mayor que el del Hubble, pudiendo medir la luz de mil millones de galaxias durante su vida útil. Este observatorio también podrá bloquear la luz de las estrellas para ver directamente exoplanetas y discos de formación planetaria, completar un censo estadístico de los sistemas planetarios de nuestra galaxia y resolver cuestiones esenciales en los ámbitos de la energía oscura, los exoplanetas y la astrofísica infrarroja.

El próximo telescopio espacial Nancy Grace Roman llevará estas observaciones de lentes gravitacionales a un nivel superior. Roman será lo suficientemente sensible como para utilizar una versión mucho más sutil del mismo efecto, llamada lente gravitacional débil, para ver cómo los cúmulos más pequeños de materia oscura deforman la apariencia de las galaxias distantes. Observando los efectos de lente a esta pequeña escala, los científicos podrán completar más lagunas en nuestra comprensión de la materia oscura.

El amplio campo de visión de Roman será al menos 100 veces mayor que el del Hubble, manteniendo la misma asombrosa calidad de imagen. También será más eficiente y tomará imágenes más rápidamente, por lo que el mapa de lentes de Roman será casi mil veces mayor que el del Hubble. Roman recogerá tantos datos en su primer año que permitirá a los científicos realizar estudios en profundidad que habrían llevado cientos de años con telescopios anteriores.

Esta simulación muestra una lente gravitatoria que se mueve contra un campo de galaxias de fondo. El objeto que pasa entre la cámara y las galaxias del fondo deforma el espacio debido a su gravedad. El espacio deformado curva la trayectoria de la luz de las galaxias del fondo, haciendo que aparezcan distorsionadas y más brillantes. Frank Summers (STScI)

Las observaciones con lentes gravitatorias débiles de Roman nos permitirán mirar aún más atrás en el tiempo de lo que el Hubble es capaz de ver. Los científicos creen que la estructura subyacente de materia oscura del universo desempeñó un papel fundamental en la formación y evolución de las galaxias al atraer la materia normal. Ver cómo se distribuía la materia oscura en el universo desde sus primeras etapas hasta el presente ayudará a los científicos a desentrañar cómo ha evolucionado a lo largo del tiempo y, posiblemente, proporcionará pistas sobre cómo puede seguir evolucionando. No sabemos qué nos deparará el futuro, pero Roman nos ayudará a averiguarlo.

Más información: https://go.nasa.gov/44PG7BU