Hubble detecta los grupos de materia oscura más pequeños conocidos.


Cada una de estas instantáneas del Telescopio Espacial Hubble revela cuatro imágenes distorsionadas de un quásar de fondo y su galaxia anfitriona que rodea el núcleo central de una galaxia masiva en primer plano. La gravedad de la galaxia masiva en primer plano está actuando como una lupa deformando la luz del cuásar en un efecto llamado lente gravitacional. Los cuásares son faroles cósmicos extremadamente distantes, producidos por agujeros negros activos. Tales imágenes cuádruples de los cuásares son raras debido a la alineación casi exacta necesaria entre la galaxia de primer plano y el cuásar de fondo. Los astrónomos utilizaron el efecto de lente gravitacional para detectar los grupos más pequeños de materia oscura que se han encontrado. Los grupos se encuentran a lo largo de la línea de visión del telescopio hacia los cuásares, así como dentro y alrededor de las galaxias de lentes en primer plano. La presencia de las concentraciones de materia oscura altera el brillo aparente y la posición de cada imagen de cuásar distorsionada. Los astrónomos compararon estas mediciones con predicciones de cómo se verían las imágenes del cuásar sin la influencia de los grupos de materia oscura. Los investigadores utilizaron estas medidas para calcular las masas de las pequeñas concentraciones de materia oscura. La cámara 3 de campo ancho del Hubble, capturó la luz infrarroja cercana de cada cuásar, y la dispersó en sus colores componentes para estudiarla con espectroscopía. Las imágenes fueron tomadas entre 2015 y 2018.
Créditos: NASA, ESA, A. Nierenberg (JPL) y T. Treu (UCLA)

Utilizando el telescopio espacial Hubble de la NASA y una nueva técnica de observación, los astrónomos han descubierto que la materia oscura forma grupos mucho más pequeños que los conocidos previamente. Este resultado confirma una de las predicciones fundamentales de la teoría ampliamente aceptada de “materia oscura fría”.

Todas las galaxias, según esta teoría, se forman y están incrustadas dentro de las nubes de materia oscura. La materia oscura en sí misma consiste en partículas de movimiento lento o “frías” que se unen para formar estructuras que van desde cientos de miles de veces la masa de la galaxia de la Vía Láctea hasta grupos no más masivos que el peso de un avión comercial. (En este contexto, “frío” se refiere a la velocidad de las partículas).

La observación del Hubble arroja nuevos conocimientos sobre la naturaleza de la materia oscura y cómo se comporta. “Hicimos una prueba de observación muy convincente para el modelo de materia oscura fría y pasa con gran éxito”, dijo Tommaso Treu, de la Universidad de California, Los Ángeles (UCLA), miembro del equipo de observación.

La materia oscura es una forma invisible de materia que constituye la mayor parte de la masa del universo y crea el andamiaje sobre el cual se construyen las galaxias. Aunque los astrónomos no pueden ver la materia oscura, pueden detectar su presencia indirectamente midiendo cómo su gravedad afecta a las estrellas y galaxias. Detectar las formaciones de materia oscura más pequeñas buscando estrellas incrustadas puede ser difícil o imposible, ya que contienen muy pocas estrellas.

Si bien se han detectado concentraciones de materia oscura alrededor de galaxias grandes y medianas, hasta ahora no se han encontrado grupos mucho más pequeños de materia oscura. Ante la falta de evidencia observacional para tales grupos a pequeña escala, algunos investigadores han desarrollado teorías alternativas, incluida la “materia oscura cálida”. Esta idea sugiere que las partículas de materia oscura se mueven rápidamente, comprimiéndose demasiado rápido para fusionarse y formar concentraciones más pequeñas. Las nuevas observaciones no respaldan este escenario, ya que encuentran que la materia oscura es “más fría” de lo que debería ser en la teoría alternativa de la materia oscura cálida.

“La materia oscura es más fría de lo que sabíamos a escalas más pequeñas”, dijo Anna Nierenberg, del Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California. “Los astrónomos han llevado a cabo otras pruebas de observación de las teorías de la materia oscura antes, pero la nuestra proporciona la evidencia más sólida hasta ahora de la presencia de pequeños grupos de materia oscura fría. Al combinar las últimas predicciones teóricas, herramientas estadísticas y nuevas observaciones del Hubble, ahora tenemos un resultado mucho más robusto de lo que era posible anteriormente”.

La caza de concentraciones de materia oscura sin estrellas ha resultado ser un desafío. Sin embargo, el equipo de investigación del Hubble utilizó una técnica en la que no necesitaban buscar la influencia gravitacional de las estrellas como trazadores de materia oscura. El equipo apuntó a ocho “farolas” cósmicas poderosas y distantes, llamadas cuásares (regiones alrededor de agujeros negros activos que emiten enormes cantidades de luz). Los astrónomos midieron cómo la luz emitida por el oxígeno y el gas de neón que orbitan cada uno de los agujeros negros de los cuásares, se deforma por la gravedad de una galaxia masiva en primer plano, que actúa como una lente de aumento.


Este gráfico ilustra cómo la luz de un cuásar lejano es alterada por una galaxia masiva en primer plano y por pequeños grupos de materia oscura a lo largo del camino de la luz. La poderosa gravedad de la galaxia deforma y magnifica la luz del cuásar, produciendo cuatro imágenes distorsionadas del cuásar. Los grupos de materia oscura residen a lo largo de la línea de visión del telescopio espacial Hubble hacia el cuásar, así como dentro y alrededor de la galaxia en primer plano. La presencia de los grupos de materia oscura altera el brillo aparente y la posición de cada imagen de cuásar distorsionada al deformar y doblar ligeramente la luz a medida que viaja desde el lejano cuásar a la Tierra, como lo representan las líneas onduladas en el gráfico. Los astrónomos compararon estas mediciones con predicciones de cómo se verían las imágenes del cuásar sin la influencia de los grupos de materia oscura. Los investigadores utilizaron estas medidas para calcular las masas de las pequeñas concentraciones de materia oscura. Las imágenes cuádruples de un cuásar son raras porque el cuásar de fondo y la galaxia de primer plano requieren una alineación casi perfecta.
Créditos: NASA, ESA y D. Player (STScI)

Usando este método, el equipo descubrió grupos de materia oscura a lo largo de la línea de visión del telescopio hacia los cuásares, así como dentro y alrededor de las galaxias de lentes interpuestas. Las concentraciones de materia oscura detectadas por Hubble son 1 / 10,000th a 1 / 100,000th veces la masa del halo de materia oscura de la Vía Láctea. Es probable que muchas de estas pequeñas agrupaciones no contengan incluso galaxias pequeñas y, por lo tanto, hubieran sido imposibles de detectar mediante el método tradicional de búsqueda de estrellas incrustadas.

Los ocho cuásares y galaxias se alinearon con tanta precisión que el efecto de deformación, llamado lente gravitacional, produjo cuatro imágenes distorsionadas de cada cuásar. El efecto es como mirar un espejo funhouse. Tales imágenes cuádruples de los cuásares son raras debido a la alineación casi exacta necesaria entre la galaxia de primer plano y el cuásar de fondo. Sin embargo, los investigadores necesitaban las múltiples imágenes para realizar un análisis más detallado.

La presencia de los grupos de materia oscura altera el brillo aparente y la posición de cada imagen de cuásar distorsionada. Los astrónomos compararon estas mediciones con predicciones de cómo se verían las imágenes del cuásar sin la influencia de la materia oscura. Los investigadores utilizaron las mediciones para calcular las masas de las pequeñas concentraciones de materia oscura. Para analizar los datos, los investigadores también desarrollaron elaborados programas informáticos y técnicas intensivas de reconstrucción.

“Imagine que cada una de estas ocho galaxias es una lupa gigante”, explicó el miembro del equipo Daniel Gilman de UCLA. “Pequeños grupos de materia oscura actúan como pequeñas grietas en la lupa, alterando el brillo y la posición de las cuatro imágenes del cuásar en comparación con lo que cabría esperar si el vidrio fuera liso”.

Los investigadores utilizaron la cámara de campo amplio Hubble 3 para capturar la luz infrarroja cercana de cada cuásar y dispersarla en los colores de sus componentes para su estudio con espectroscopía. Las emisiones únicas de los cuásares de fondo se ven mejor en luz infrarroja. “Las observaciones del Hubble desde el espacio nos permiten realizar estas mediciones en sistemas de galaxias que no serían accesibles con la resolución más baja de los telescopios terrestres, y la atmósfera de la Tierra es opaca a la luz infrarroja que necesitábamos observar”, explicó el miembro del equipo Simon Birrer de UCLA.

Treu agregó: “Es increíble que después de casi 30 años de operación, Hubble esté permitiendo vistas de vanguardia de la física fundamental y la naturaleza del Universo que ni siquiera soñamos cuando se lanzó el telescopio”.

Las lentes gravitacionales se descubrieron al examinar los sondeos terrestres como Sloan Digital Sky Survey y Dark Energy Survey, que proporcionan los mapas tridimensionales más detallados del Universo que se hayan hecho. Los cuásares se encuentran a unos 10 mil millones de años luz de la Tierra; las galaxias en primer plano, alrededor de 2 mil millones de años luz.

El número de pequeñas estructuras detectadas en el estudio ofrece más pistas sobre la naturaleza de la materia oscura. “Las propiedades de las partículas de la materia oscura conforman cuántos grupos se forman”, explicó Nierenberg. “Eso significa que puedes aprender sobre la física de partículas de la materia oscura contando la cantidad de pequeños grupos”.

Sin embargo, el tipo de partícula que forma la materia oscura sigue siendo un misterio. “En la actualidad, no hay evidencia directa en el laboratorio de que existan partículas de materia oscura”, dijo Birrer. “Los físicos de partículas ni siquiera hablarían sobre la materia oscura si los cosmólogos no dijeran que está allí, en base a las observaciones de sus efectos. Cuando los cosmólogos hablamos sobre la materia oscura, nos preguntamos” cómo gobierna la apariencia del Universo, ¿Y en qué escalas? “

Los astrónomos podrán realizar estudios de seguimiento de la materia oscura utilizando futuros telescopios espaciales de la NASA como el James Webb Space Telescope y el Wide Field Infrared Survey Telescope (WFIRST), ambos observatorios infrarrojos. Webb será capaz de obtener estas mediciones de manera eficiente para todos los quásares con lentes cuádruples conocidos. La nitidez y el gran campo de visión de WFIRST ayudarán a los astrónomos a hacer observaciones de toda la región del espacio afectada por el inmenso campo gravitacional de galaxias masivas y cúmulos de galaxias. Esto ayudará a los investigadores a descubrir muchos más de estos sistemas raros.

El equipo presentará sus resultados en la 235ª reunión de la American Astronomical Society en Honolulu, Hawaii.

El telescopio espacial Hubble es un proyecto de cooperación internacional entre la NASA y la ESA (Agencia Espacial Europea). El Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, administra el telescopio. El Instituto de Ciencia del Telescopio Espacial (STScI) en Baltimore, Maryland, lleva a cabo operaciones científicas del Hubble. STScI es operado para la NASA por la Asociación de Universidades para la Investigación en Astronomía en Washington, D.C.